
Honeywords:
Making Password-Cracking Detectable

CS-558
INTERNET SYSTEMS AND TECHNOLOGIES

(SS 2021)

Ari Juels
RSA Laboratories
Cambridge, MA, USA
ari.juels@rsa.com

Ronald L. Rivest
MIT CSAIL
Cambridge, MA, USA
rivest@mit.edu

ABSTRACT

Honeywords
● Simple method

● Improving security of hashed passwords

Use of honeyword

Password or Honeyword?

steal

INTRODUCTION

Passwords are weak ● Users frequently choose poor passwords

● Adversary applies brute-force attack

Real passwords
are often weak
and easily
guessed.

How about an
example?

● October 2013
○ Adobe lost 130 million passwords

● March 2013
○ Evernote lost 50 million passwords

● July 2012
○ Yahoo lost 130 million passwords

● June 2012
○ Linkedin lost 130 million passwords

Can we tighten
security?

❖ Make password hashing more complex and
time-consuming

➢ Improve password security

➢ Slow down legitimate user’s authentication

➢ Doesn’t make successful password cracking
easier to detect

➢ Help to password cracking detection

➢ Adversary can distinguish fake accounts

■ Usernames

■ Account’s activity

Fake user accounts ❖ Honeypots

login raise alarm

Honeypot
was
used

Paper’s approach
● Extending previous idea for all users

○ Multiple possible passwords per user
○ Set off an alarm if a honeyword is triggered

➢ Makes password cracking detection easier
➢ Effective and easy to implement
➢ Useful layer of defense

Alice

Honeyword1

Honeyword2

Honeyword3

Real_password

Honeyword4

Terminology

Terminology

Honeywords

Sweetwords
True
password

Hashed
Passwords’ File

Attack scenarios
● Stolen files of passwords hashes

○ offline brute-force computation

● Easily guessable passwords
○ poorly or common passwords

● Visible passwords

● Same password for many systems

● Passwords stolen from users
○ phishing

● Password change compromised

➔ We focus on the first attack scenario
◆ Adversary has file of usernames and associated

hashed passwords

Honeychecker

Honeychecker

What is it?

● An auxiliary secure server

● Communication is over dedicated lines
and/or encrypted and authenticated

● Capable of taking an action

Honeychecker

Database
● Maintain a single database value for each user

Alice 4

Bob 3

Jax 1

Tommy 1

Users-Real password pairs

Alice

Honeyword1

Honeyword2

Honeyword3

Real_password

Honeyword4

System’s
Database

Table C

Honeychecker

API

➔ Set(i,j): Sets c(i) to have value j

Alice 4

Bob 3

Jax 1

Tommy 1

User-password table

➔ Check(i,j): Checks that c(i) = j.

Set(2,4)

c(i) = j

Alice 4

Bob 4

Jax 1

Tommy 1

Check(2,4)

Table c

Honeychecker

Design principles

● Extremely simple

● Minimal amount of secret state

● Little overhead in computation and
communication

● The compromisation of the honeychecker at
worst only reduces security to the level it
was before honeywords and honeychecker
was introduced, since it only stores random
small integers.

Login

System’s
Database

Login

Every time someone tries to login:

Alice

Bob

Jax

Tommy

Honeyword1

Honeyword2

Honeyword3

Real_password

Honeyword4

Alice 4

Bob 3

Jax 1

Tommy 1

User-Password

Check(1,4)

Real_password

Alice

Login

Every time someone tries to login:

Honeyword1

Honeyword2

Honeyword3

Real_password

Honeyword4

System’s
Database

Alice 4

Bob 3

Jax 1

Tommy 1

Check(1,3)

★ Take an action (determined by policy)

Honeyword3

Alice User-Password

Alice

Bob

Jax

Tommy

Actions

● Notify administrator

● Let login proceed as usual

● Let login proceed on a honeypot system

● Trace the source of the login

● Turn on additional logging of the user’s
activities

● Shut down user’s account

● Shut down the whole system

If password is neither the real one nor one of the
user’s honeywords, login is denied!

Change Password

Change password

● Create a new list of sweetwords
 (honeywords + real password)

● Securely notify the honeychecker of the new real
password’s index in sweetwords

● Update the user's entry in system’s file

Alice

Bob

Jax

Tommy

New_Honeyword1

New_Honeyword2

New_Honeyword3

New_password

New_Honeyword4

New_honeyword1, New_honeyword2, New_honeyword3,
New_password, New_honeyword4

Honeyword Generation

Honeyword
Generation

● User’s password must be indistinguishable from
honeywords

● How can we ensure that an adversary will not
find the real password?

Which is Alice’s real password?

❖ Modified-UI

➢ Password-change UI is changed
for a better honeyword generation

➢ User’s new password is modified

Approaches

Is there an impact on the user
interface(UI)?

❖ Legacy-UI

➢ Password-change UI is unchanged

➢ User chooses his password

❖ Chaffing by tweaking

➢ Chaffing-by-tail-tweaking
■ “Tweak” last t character positions

➢ Chaffing-by-tweaking-digits
■ “Tweak” last t positions including integers

❖ Chaffing with a password model

➢ Honeywords could be real passwords
■ Take from published list

➢ Honeywords use password’s syntax

Legacy-UI

BG+7q03

BG+7m55

BG+7y45

BG+7o92

BG+7w88

Chaffing-by-tail-tweaking

BG+7y45

“Tweak” last t character positions

Let t = 3:

User-supplied password:

Chaffing-by-tweaking-digits

57*flavors

18*flavors

21*flavors

42*flavors

42*flavors

“Tweak” last t positions including integers

Let t = 2:

User-supplied password:

Chaffing-by-tail-tweaking

42*flavors

42*flavrbn

42*flavctz

42*flavrew

42*flavors

“Tweak” last t character positions

Let t = 3:

User-supplied password:

Tough Nuts
● What is it?

○ Very hard password that the adversary will not be
able to crack

➔ Give additional reason to:

◆ Pause before diving in

◆ Trying to log in with one of the cracked ones

9,50PEe]KV.0?RIOtc&L-:IJ"b+Wol<*[!NWT/pb

Honeywords could be real passwords

kebrton1 02123dia
a71ger forlinux
1erapc sbgo864959
aiwkme523 aj1aob12
9,50PEe]KV.0?RIOtc&L-:IJ"b+Wol<*[!NWT/pb
xyqi3tbato a3915
#NDYRODD_!! venlorhan
pizzhemix01 dfdhusZ2
sveniresly ’Sb123
mobopy WORFmgthness

Use a Published List

➢ List may also be available
to the adversary

“Tough Nut”

Honeywords use password’s syntax

Mice3blind
User-supplied
password

W4 | D1 | W5

Hall2trick

Gold5rings

Bold3wings

Goal0leaks

Modified-UI
❖ Take-a-tail

➢ Randomly chosen from the system

➢ Required in the user-entered new password

❖ Passwords randomly chosen by the system

Take-a-tail

Alice

myPassword

VARIATIONS AND EXTENSIONS

‘Random pick’ honeyword generation

Sweetwords can be generated by :

● The user
● An algorithmic password generator

This method is completely flat, no matter how
we generate the passwords

Generate a list of k distinct random sweetwords

Example k = 6:
4Tniners all41&14all i8apickle
sin(pi/2) \{1,2,3\} AB12:YZ90

Pick one element at random to be the new
password (e.g. ’AB12:YZ90’);

The other are the honeywords

Which do you think is a better way of
generating the sweetwords?

Why?

Typo-safety

Rare for the user to set of an alarm by accident

password == ‘gt79’ and honeywords == [‘gt76’, ‘‘gt77’, ‘‘gt78’, ...]

tail-tweaking requires the password tail to be quite different from the
honeywords’ tails!

Honeywords’ tails should be quite different from each other as well.

Typo-safety
(example)

Example of using an error-detection
code to detect typos

Use an error-detection code to detect typos! How? (example t=3)

tail_1 = 413

3*(4) + 2*(1) + 1*(3) =
= 12 + 2 + 3 = 17

tail_2 = 913

3*(9) + 2*(1) + 1*(3) =
= 27 + 2 + 4 = 33

|17 - 33| = 16 The difference between these 2 should be a multiple
of q. Here it is not, so… (#sorrynotsorry)

Pick a small prime greater than 10: q = 13

This property:
● is easy to arrange between sweetwords
● allows detection of any single digit substitution

(e.g. 413 and 913)
● allows detection of transposition of two adjacent digits

(e.g. 413 and 431)

Proof :
err(tail_1) - err(tail_2) = 3*x + 2*y + 1*z - 3*k - 2*y - 1*z = 3*x - 3*k = 3*(x-k) which will never be a prime, no matter the index
err(tail_1) - err(tail_2) = 3*x + 2*y + 1*z - 3*y - 2*x - 1*z = 3x - 2x + 2y - 3y = x - y which will always be < 10, where x, y are single digits

Managing old
passwords

Many systems keep old passwords of users stored (usually the last 10)

Prohibiting a user from reusing her old passwords

Why do the authors disagree with this method?

● Hashes of old passwords should not be stored cause hashes can
be inverted on weak passwords

● A user has probably changed her passwords just because it was
weak, but she may be using on other systems

HER ACCOUNT ON OTHER SYSTEMS IS AT RISK

Managing old passwords:
authors’ suggestions

Record previously used password across the
full user population

● A newly created password should not
conflict with any of the passwords in the
list (of previously used passwords)

● This list could be stored as a Bloom filter
(not the hashed passwords themselves)
for more efficiency

However…, if it required to store the old
passwords

● In a protected module separated from the
main system (distributed security), or …

● Store them in the main system for legacy
compatibility but,

○ encrypted
○ keys for encryption/decryption stored in

the honeychecker

Storage
optimization

Reduce storage of honeyword
generation methods

00flavors
01flavors
02flavors
…
99flavors

Password = ‘32flavors’ then T(password) =

● Save a random on the computer system
(e.g. H(45flavors))

● Save the index of the real password to the
honeychecker (e.g. C(i) = 33, index of ‘32flavors’)

Example: Adversary or user submits a guess ‘g’ to the
system for logging in (e.g. 67flavors)

● Produce T(g) (e.g. T(g) will be equal to T(password))
● if H(45flavors) in T(g) then find the index of g in T(g)
● if index == 45 ‘ALARM’

else if index == 33 ‘allow login’
else ‘deny login’

Hybrid generation
methods

Combine the benefits of different
honeyword generation methods

chaffing-by-tweaking-digits with chaffing-with-a-password-model

Password provide by user ‘abacad513’

chaffing-with-a-password-model

abacad513 => W5 | D3D
produce

abacad513 snurfle672 zinja750

chaffing-by-tweaking-digits

abacad513 snurfle672 zinja750
abacad941 snurfle806 zinja802
abacad004 snurfle772 zinja116
abacad752 snurfle091 zinja649

POLICY CHOICES

Password Eligibility

Some words may be ineligible as
passwords.

Which passwords should not be used!

1. Password syntax
a. minimum length (‘Hi’ can’t be a

password)
b. minimum number of digits (e.g.

’myname41’ - for honeywords to
be produced ’myname42’, ...)

c. minimum number of special
characters

2. Dictionary words (‘giraffe’, ’floWer’, etc.)
3. Most common passwords

Top 20 most common passwords according to NordPass

#funfacts
The 20 most common passwords made
up more than 10% of the surveyed
passwords

The most common password "123456",
makes up 4%

Failover

Computer system Honeychecker

Logins should proceed even if the honeychecker has failed

Buffer messages on the computer system for later delivery to
the honeychecker

Per-user and
Per-sweetword
Policies

Policies that vary per-user

Per-user policies

● Honeypot accounts: known only to the honeychecker

● Selective alarms: raise an alarm for sensitive accounts
(administrator accounts)

Per-sweetword policies

● Hits on honeywords with small edit distance to the
password should invoke a less severe reaction

○ To prevent user-typos

● Examples of such actions:

○ “Raise silent alarm,”

○ “Allow login,”

○ “Allow for single login only,” etc...

ATTACKS

General password
guessing

Do not use common passwords

Take-a-tail method can reduce the
probability of guessing the password
by a factor of 1000

Example:
password = applethief

take-a-tail with t = 3
password = applethief355

● hard to remember
● can be brute forced in ms if you

find ‘applethief’ in a dictionary

Targeted password
guessing

Personal information help an adversary distinguish the
password from the honeywords

lovemycat45
lovemydog24
hatemyhamster87
ilikebeers64
stanley49

Guess above user’s password from the list

How can an adversary find personal information about
the user?

Attacking the
honeychecker

An adversary may decide to attack the
honeychecker or its communications

Requests to the and replies from the honeychecker should
always be authenticated!

Adversary
pretending the

computer
system

Honeychecker

Set
Check

Adversary
pretending the
honeycheckerComputer

System

Allow login

Likelihood attack

Maximize the chance of picking a
password from a sweetword list

Having stolen file F
calculate the probability of
each sweetword being a
honeyword or a password

The probability that
sweetword x is a
password:

R(x) = U(x) / G(x)

U(x) user picked
G(x) algorithm generated

Example: ‘NewtonSaid:F=ma’
obvious structure to a human
not very obvious to an automatic generator

Denial-of-service

Denial-of-service attacks caused by
chaffing-by tweaking

Methods such as
chaffing-by-tweaking e.g.
45flavors
46flavors
47flavors
etc.

Give the opportunity to
an adversary that knows
a user’s password to
perform a DoS attack!

”45flavors”

”46flavors”

”47flavors”

”48flavors”

Honeyword
hit

Easy to guess
honeywords!

Global password reset!

Adversary can guess
passwords simulating a
DoS attack

Inadequately sensitive Overly sensitive

Multiple systems

Attack multiple systems against users
that use the same password

Intersection attack Sweetword-submission attack

cat93
cat54
cat22
cat42

cat93
cat74
cat28
cat62

Organisations A
file F

Organisations B
file F

Their intersection == ‘cat93’
That’s user’s password!

Suggestion: take-a-tail

cat93
cat54
cat22
cat42

cat15
cat74
cat28
cat62

Same head but different tail!

Even if the adversary only has
organisations A file F

cat93
cat54
cat22
cat42

Organisations B

submit

No honeywords hit

RELATED WORK

RELATED WORK

Password strength

● basic8 -> 1 billion guesses 40.3% cracked
● MD5 -> 3 billion guesses/sec on GPUs
● The majority of passwords has around 20

bits of entropy against optimal attacker
○ 1 million guesses on average are enough
○ based on 70 million Yahoo! users

● Bonneau and Preibusch advice on :
○ password management
○ account lockout policies
○ update and recovery

Password strengthening

● take-a-tail -> password strengthening
● System generates random characters until

user obtains a memorable password
● e.g. user’s suggestion = ‘ilovecats’
● system-generated passwords:

○ ‘ilovecats523’
○ ‘ilovecats847’ pick one!
○ ‘ilovecats196’

RELATED WORK

Password storage and verification

● Splitting password related secrets
○ distributed cryptography

● Preferable to honeywords
○ require big system and client changes

● Honeywords are a stepping stone to such
approaches

Decoys

● Use of decoy resources is an old practice
to detect security breaches!

● honeypots
● ”Honeytokens” bogus credentials e.g.

○ fake credit card numbers
● Fabricated/decoy files

Conclusion

Conclusion

● Someone who has stolen a password file can brute-force to search for
passwords

● By using honeywords adversary does not have the confidence that he can login
without being detected.

● Despite their benefits over common methods honeywords aren't a wholly
satisfactory approach to user authentications.

● Simple-to-deploy and a powerful new line of defense

References

https://en.wikipedia.org/wiki/Bloom_filter

https://en.wikipedia.org/wiki/List_of_the_most_common_passwords

https://www.ece.unb.ca/tervo/ece4253/isbn.shtml

Contact

Andreas Theofanous csd3768@csd.uoc.gr
Emmanouil Sylligardos csd3849@csd.uoc.gr

CS-558
INTERNET SYSTEMS AND TECHNOLOGIES

(SS 2021)

https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/List_of_the_most_common_passwords
https://www.ece.unb.ca/tervo/ece4253/isbn.shtml
mailto:csd3768@csd.uoc.gr
mailto:csd3768@csd.uoc.gr

